Abstract
The drug development pipeline involves several stages including in vitro assays, in vivo assays, and clinical trials. For candidate selection, it is important to consider that a compound will successfully pass through these stages. Using graph neural networks, we developed three subdivisional models to individually predict the capacity of a compound to enter in vivo testing, clinical trials, and market approval stages. Furthermore, we proposed a strategy combing both active learning and ensemble learning to improve the quality of the models. The models achieved satisfactory performance in the internal test datasets and four self-collected external test datasets. We also employed the models as a general index to make an evaluation on a widely known benchmark dataset DEKOIS 2.0, and surprisingly found a powerful ability on virtual screening tasks. Our model system (termed as miDruglikeness) provides a comprehensive drug-likeness prediction tool for drug discovery and development.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.