Abstract

Recently, motivated by certain loop quantum gravity inspired corrections, it was shown that for spherically symmetric midisuperspace models infinitely many second derivative theories of gravity exist (as revealed by the presence of three arbitrary functions in the corresponding Lagrangian/Hamiltonian) and not just those allowed by spherically symmetric general relativity. This freedom can be interpreted as the freedom to accommodate certain quantum gravity corrections in these models even in the absence of higher curvature terms (at a semi-classical level, at least). For a particular choice of the arbitrary functions it is shown that the new theories map to spherically symmetric general relativity in arbitrary number of (integer) dimensions thus explicitly demonstrating that when working with midisuperspace models, one loses the information about the dimensionality of the full spacetime. In addition, it is shown that these new theories can accommodate scenarios of fractional spacetime dimensions as well as those of emergent spacetime dimensions -- a possibility suggested by various approaches to quantum gravity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.