Abstract

The quasi-phase-matched (QPM) wavelength acceptation bandwidth for a difference frequency generation (DFG)mid-IR laser source with fiber lasers as the fundamental sources is effectively broadened by using the dispersion relations and its temperature characteristic of periodically poled MgO-doped LiNbO3 (PPMgLN). Our simulation results show that, with an erbium-doped fiber laser (EDFL) and a ytterbium-doped fiber laser (YDFL) respectively operating near 1550 and 1060 nm wave-bands as the signal source and pump source, for the same mid-IR wavelength regions, the allowable wavelength range given by the QPM condition for the pump wave is much larger than that for the signal wave. When the wavelength of the signal wave is fixed at 1560 nm, for a given optimized crystal temperature, the acceptance bandwidth for the pump wave is over 17 nm, corresponding to the acceptance bandwidth for the idler wave of about 180 nm. Based on it, by using a multiwavelength YDFL and a single wavelength EDFL cascaded by an erbium-doped fiber amplifier (EDFA) respectively as the pump source and the signal source, 14-wavelength mid-IR laser lines, with a spacing of about 14 nm in between, are obtained simultaneously with our QPM-DFG laser system when both the temperature and the grating period of the PPMgLN used being kept unchanged at 73.5 ℃ and 30 μm respectively. Moreover, the mid-IR multiwavelength laser lines may be tuned synchronously by varying the signal wavelength.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call