Abstract

Divergence compensation, optimization of the optical-to-optical efficiency, and high beam quality of signal and idler beams of a high-energy mid-infrared ZnGeP2 (ZGP) optical parametric oscillator (OPO) have been demonstrated by use of a Galilean telescope inside the nonplanar fractional-image-rotation enhancement (FIRE) ring resonator. With a small variation of the distance between the lenses of the telescope, the divergences of signal and idler beams could be adjusted. Up to 36 mJ of mid-infrared pulse energy in the 3-5 µm wavelength range is obtained with 92 mJ of pump energy on crystal. The beam quality factors M2 are < 1.5 for the resonant signal beam and the non-resonant idler beam, respectively. Actually, this is an improvement of the beam quality by a factor 3 for the signal and ~2.7 for the idler beam compared without using a telescope inside the FIRE ring resonator.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.