Abstract

Black phosphorus stands out from the family of two-dimensional materials as a semiconductor with a direct, layer-dependent bandgap in energy corresponding to the spectral range from the visible to the mid-infrared (mid-IR), as well as many other attractive optoelectronic attributes. It is, therefore, a very promising material for various optoelectronic applications, particularly in the important mid-IR range. While mid-IR technology has been advancing rapidly, both photodetection and electro-optic modulation in the mid-IR rely on narrow-band compound semiconductors, which are difficult and expensive to integrate with the ubiquitous silicon photonics. For mid-IR photodetection, black phosphorus has been proven to be a viable alternative. Here, we demonstrate electro-optic modulation of mid-IR absorption in few-layer black phosphorus under field applied by an electrostatic gate. Our experimental and theoretical results find that, within the doping range obtainable in our samples, the quantum confined Franz-Keldysh effect is the dominant mechanism of electro-optic modulation. Spectroscopic study on samples with varying thickness reveals strong layer-dependence in the inter-band transition between different sub-bands. Our results show black phosphorus is a very promising material to realizing efficient mid-IR modulators.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.