Abstract

Open-path quantum cascade laser (QCL) systems are being developed for remote environmental monitoring applications for detection of small levels of toxins or pollutant gases in ambient air. In monostatic systems that rely on topographic backscatter, the surface reflection of the target becomes important. To address the feasibility of natural targets in an open-path geometry, we present the backscattering measurements of common urban building materials (aluminum, natural stones, ceramic wall tiles and concrete block) using a distributed feedback (DFB) pulsed QCL. Real surface roughness in the materials was taken into account. In particular, oblique scattering cases which are often unavoidable in field measurements were also investigated. The QCL measurements were evaluated with a FTIR system in which wide frequency range (2.8μm - 25μm) measurements were possible. These results were applied to a total link model to define the potential and range of an open path QCL chemical sensor system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.