Abstract

Tsetse flies from the subspecies Glossina morsitans morsitans and Glossina palpalis gambiensis, respectively, transmit Trypanosoma brucei rhodesiense and Trypanosoma brucei gambiense. The former causes the acute form of sleeping sickness, and the latter provokes the chronic form. Although several articles have reported G. m. morsitans gene expression following trypanosome infection, no comparable investigation has been performed for G. p. gambiensis. This report presents results on the differential expression of immune-related genes in G. p. gambiensis challenged with T. b. gambiense. The aim was to characterize transcriptomic events occurring in the tsetse gut during the parasite establishment step, which is the crucial first step in the parasite development cycle within its vector. The selected genes were chosen from those previously shown to be highly expressed in G. m. morsitans, to allow further comparison of gene expression in both Glossina species. Using quantitative PCR, genes were amplified from the dissected midguts of trypanosome-stimulated, infected, non-infected, and self-cleared flies at three sampling timepoints (3, 10, and 20 days) after a bloodmeal. At the 3-day sampling point, transferrin transcripts were significantly up-regulated in trypanosome-challenged flies versus flies fed on non-infected mice. In self-cleared flies, serpin-2 and thioredoxin peroxidase-3 transcripts were significantly up-regulated 10 days after trypanosome challenge, whereas nitric oxide synthase and chitin-binding protein transcripts were up-regulated after 20 days. Although the expression levels of the other genes were highly variable, the expression of immune-related genes in G. p. gambiensis appears to be a time-dependent process. The possible biological significance of these findings is discussed, and the results are compared with previous reports for G. m. morsitans.

Highlights

  • Tsetse flies (Glossina sp.) are responsible for the cyclical transmission of protozoan known as trypanosomes, which are the causative agents of Human African Trypanosomiasis (HAT; or sleeping sickness) and Animal African Trypanosomiasis throughout sub-Saharan Africa (Simarro et al, 2003)

  • No vaccine is available for the mammalian host, as the variant surface glycoprotein (VSG) coating the trypanosome plasma membrane makes the development of a vaccine unlikely

  • Twelve immune-related genes were selected on the basis of their high differential expression in the G. m. morsitans/T. b. brucei couple, as previously reported by Lehane et al (2003)

Read more

Summary

Introduction

Tsetse flies (Glossina sp.) are responsible for the cyclical transmission of protozoan known as trypanosomes, which are the causative agents of Human African Trypanosomiasis (HAT; or sleeping sickness) and Animal African Trypanosomiasis (or nagana) throughout sub-Saharan Africa (Simarro et al, 2003). No vaccine is available for the mammalian host, as the variant surface glycoprotein (VSG) coating the trypanosome plasma membrane makes the development of a vaccine unlikely. Part of this VSG composition and structure periodically varies, which in turn causes periodic antigenic variations that allow the trypanosome to escape both injected and/or natural host-produced antibodies. This coat prevents antibodies from gaining access to invariant surface molecules (MacGregor et al, 2012). Chemotherapy treatments have major harmful side effects and are difficult to administer (Priotto et al, 2008), and the emergence of parasite resistance has decreased the efficacy of drug treatments (Baker et al, 2013)

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.