Abstract

Over a quarter of a century ago, Mykles described the presence of putative endocrine cells in the midgut epithelium of the crab Cancer magister (Mykles, 1979). In the years that have followed, these cells have been largely ignored and nothing is known about their hormone content or the functions they play in this species. Here, we used a combination of immunohistochemistry and mass spectrometric techniques to investigate these questions. Using immunohistochemistry, we identified both SIFamide- and tachykinin-related peptide (TRP)-like immunopositive cells in the midgut epithelium of C. magister, as well as in that of Cancer borealis and Cancer productus. In each species, the SIFamide-like labeling was restricted to the anterior portion of the midgut, including the paired anterior midgut caeca, whereas the TRP-like immunoreactivity predominated in the posterior midgut and the posterior midgut caecum. Regardless of location, label or species, the morphology of the immunopositive cells matched that of the putative endocrine cells characterized ultrastructurally by Mykles (Mykles, 1979). Matrix-assisted laser desorption/ionization-Fourier transform mass spectrometry identified the peptides responsible for the immunoreactivities as GYRKPPFNGSIFamide (Gly1-SIFamide) and APSGFLGMRamide [Cancer borealis tachykinin-related peptide Ia (CabTRP Ia)], respectively, both of which are known neuropeptides of Cancer species. Although the function of these midgut-derived peptides remains unknown, we found that both Gly1-SIFamide and CabTRP Ia were released when the midgut was exposed to high-potassium saline. In addition, CabTRP Ia was detectable in the hemolymph of crabs that had been held without food for several days, but not in that of fed animals, paralleling results that were attributed to TRP release from midgut endocrine cells in insects. Thus, one function that midgut-derived CabTRP Ia may play in Cancer species is paracrine/hormonal control of feeding-related behavior, as has been postulated for TRPs released from homologous cells in insects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.