Abstract

Compute node failures are becoming a normal event for many long-running and scalable MPI applications. Keeping within the MPI standards and applying some of the methods developed so far in terms of fault tolerance, we developed a methodology that allows applications to tolerate failures through the creation of semi-coordinated checkpoints within the RADIC architecture. To do this, we developed the ULSC2-RADIC middleware that divides the application into independent MPI worlds where each MPI world would correspond to a compute node and make use of the DMTCP checkpoint library in a semi-coordinated environment. We performed experimental results using scientific applications and the NAS Parallel Benchmarks to assess the overhead and also the functionality in case of a node failure. We evaluated the computational cost of the semi-coordinated checkpoints compared with the coordinated checkpoints.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.