Abstract
Understanding the multiple tectonic transformations during the Himalayan orogeny is significant in evaluating the evolution of Himalayan orogen. In the Gyirong area in south Tibet, deformed leucogranitic veins in the biotite-plagioclase gneisses of Greater Himalayan crystalline complex (GHC) constitute south-vergent asymmetric folds. The reconstruction of the veins shows that they experienced two generations of deformation under different tectonic regimes: an earlier top-to-north extension and a later top-to-south thrusting, implying a tectonic transformation from N-S extension to N-S shortening. Zircons LA-ICP-MS U-Pb dating of the leucogranite shows that it was emplaced during 21.03-18.7 Ma. The data suggest that the tectonic transformation occurred after 18.7 Ma. The chronological data of South Tibet detachment system (STDS) and North-South trending rift (NSTR) from Gyirong and other areas indicate that the Himalayan orogeny was in a period of tectonic transformation from N-S extension to N-S shortening during 19-13 Ma. The transformation of tectonic regime was probably controlled by the India-Asia convergence rate. An increase in the convergence rate resulted in N-S shortening of the orogen, thrusting and folding, with coeval formation of the NSTR in Tibet. A decrease in the convergence rate led to N-S extension and reactivation of the STDS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.