Abstract

Histones are the most abundant protein family in the cells of complex organisms such as mammals and, together with DNA, they define the backbone of chromatin. Histone PTMs are key players of chromatin biology, as they function as anchors for proteins that bind and modulate chromatin readout, including gene expression. Middle-down mass spectrometry (MS) has been optimized for about 10 years to study histone N-terminal tails, but it has been rarely applied to identify the role of coexisting histone marks in biology. In this work, Jiang etal. used middle-down MS to study the dynamics of coexisting PTMs on histone H4 in two breast cancer cell lines. They found that overall serine 1 phosphorylation (S1ph) is mildly regulated during the cell cycle, but S1ph coexistence frequency with acetylations and methylations on the lysine residues of the N-terminal tail is remarkably tuned during S phase and G2/M phase. Together, the team placed another benchmark proving that MS analysis of combinatorial histone PTMs provides a more comprehensive view on chromatin state than studying individual marks. We should then constantly question ourselves regarding the limitations of analyzing single PTMs when we attempt to define their effect on protein functions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.