Abstract

ABSTRACT During the Aptian 28 to possibly 34 transgressive-regressive “fourth-order” sequences were deposited on the Arabian Plate. The sequences were controlled by sea-level fluctuations with a relative amplitude of 5–20 m. The fluctuations are interpreted as the glacio-eustatic response to orbital-forcing and assumed to have an average duration of 405 Kyr corresponding to the long-eccentricity orbital cycle. The sequences are referred to as “stratons” and calibrated in the orbital time scale of Matthews and Al-Husseini (2010, abbreviated M&H-2010). An independent study by Huang et al. (2010) counted nearly 33 cycles of 405-Kyr in a deep-marine Aptian succession in the Piobicco core in central Italy. The Italian cycles and Arabian stratons can be correlated in GTS 2004 by the position and age of the oceanic anoxic event OAE1a (Selli Interval, ca. 124.5–123.1 Ma). Two lowermost Aptian stratons and at least nine upper Aptian ones show stratigraphic geometries that imply 40–50 m box-like drops in relative sea level. They provide evidence for the formation of an ice sheet, mainly in Antarctica, that held several 10s of meters sea-level equivalent. The ca. 5-Myr-long late Aptian drop started at Global SB Apt 5 (ca. 117.9 Ma), which correlates to a major eccentricity minimum predicted at 118.2 Ma in the M&H-2010 scale. Similar minima are predicted to recur every 14.58 Myr (36 × 405 Kyr), and to cause major glacio-eustatic drops and regional sequence boundaries (SB). The youngest SB 0 is predicted at 1.586 Ma, and SB 8 (118.2 = 1.586 + 8 × 14.58 Ma) is interpreted to have triggered the late Aptian glaciation. The M&H-2010 scale was tested against the high-resolution sea-level curve derived from benthic foraminiferal δ18O isotopes for the late Miocene to Holocene (9.25– 0.0 Ma, Miller et al., 2005, abbreviated Metal-2005). Antarctica’s glacio-eustatic signature is interpreted as high-frequency sea-level fluctuations with a period of 41 Kyr (obliquity) above -20 m relative to present-day sea level. The fluctuations ride up-and-down on longer-period sea-level cycles (transgression-regression) with amplitudes of 20–40 m. The cycles are bounded by prominent lowstands, have durations of 325–545 Kyr, and an average duration of 405 Kyr. Sequence Boundary SB 0 (predicted at 1.586 Ma) is interpreted at 1.54 Ma, and correlated to Calabrian Global sequence boundary Cala1 (1.54 Ma).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call