Abstract

Auditory thresholds with standardized clinical procedures are obtained over a much narrower frequency range by bone conduction than by air conduction. As a result, diagnostic information for both sensorineural and conductive-mechanism function is incomplete for high frequencies. A new magnetostrictive bone-conduction transducer that has the potential for improved output in the high-frequency range was evaluated in the laboratory and in a variety of subjects with normal hearing (N=11) or sensorineural hearing loss (N=9). Laboratory results indicated that harmonic distortion and acoustic radiation were both sufficiently low to allow accurate threshold measurements. Auditory thresholds obtained with this magnetostrictive bone-conduction transducer can be measured accurately under conventional clinical conditions for frequencies up to 16kHz and levels up to 85dB HL. These measures can be used to accurately characterize sensorineural hearing sensitivity for high frequencies and, when combined with standard air-conduction measures for high frequencies, to accurately characterize conductive-mechanism function for frequencies higher than possible with current diagnostic bone-conduction technology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.