Abstract

Drive pressure to stapes velocity (V(st)) transfer function measurements are collected and compared for human cadaveric temporal bones with the drive pressure alternately on the ear canal (EC) and middle ear cavity (MEC) sides of the tympanic membrane (TM), in order to predict the performance of proposed middle-ear implantable acoustic hearing aids, as well as provide additional data for examining human middle ear mechanics. The chief finding is that, in terms of the V(st) response, MEC stimulation performs at least as well as EC stimulation below 8 kHz, provided that the EC is unplugged. Plugging the EC causes a reduced response for MEC drive below 2 kHz, due to a corresponding reduction of the pressure difference between the two sides of the TM. Between 8 and 11 kHz, the MEC drive transfer functions feature an approximately 17 dB drop in magnitude below the EC drive case, the cause of which remains unknown. The EC drive transfer functions reported here feature significantly less magnitude roll-off above 1 kHz than previous studies [with a slope of -2.3 vs -6.7 dB/octave for Aibara et al., Hear. Res. 152, 100-109 (2001)], and significantly more phase group delay (134 vs 62 micros for Aibara et al.).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.