Abstract
A middle-down LC/MS approach, for the rapid quantitation and characterization of site-specific methionine oxidation in a recombinant monoclonal IgG1 molecule, is described. An IgG1 antibody was digested with endoprotease LysC under limited proteolytic conditions to produce two major components; an antigen binding fragment (Fab) and a crystallizable fraction (Fc). These fractions were then reduced to produce three major species; light chain (LC), Fc/2 which is the C terminal region of the heavy chain (HC) and the N-terminal heavy chain region (Fd). These three fragments were separated by reversed-phase HPLC using a diphenyl column. The diphenyl column resolved site-specific methionine oxidation in all three subunits. Middle-down N-terminal sequencing with a LCT premier mass spectrometer was used to identify the sites of oxidation in the LC. Sites of oxidation in the Fc/2 were identified using middle-down collision-induced dissociation (CID) on a Qtof premier. This method allowed for the rapid quantitation and identification of oxidation on each methionine residue in an IgG1 molecule.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.