Abstract

The rapid growth of approved biotherapeutics, e.g., monoclonal antibodies or immunoglobulins G (IgGs), demands improved techniques for their quality control. Traditionally, proteolysis-based bottom-up mass spectrometry (MS) has been employed. However, the long, multistep sample preparation protocols required for bottom-up MS are known to potentially introduce artifacts in the original sample. For this reason, a top-down MS approach would be preferable. The current performance of top-down MS of intact monoclonal IgGs, though, enables reaching only up to ∼30% sequence coverage, with incomplete sequencing of the complementarity determining regions which are fundamental for IgG's antigen binding. Here, we describe a middle-down MS protocol based on the use of immunoglobulin G-degrading enzyme of Streptococcus pyogenes (IdeS), which is capable of digesting IgGs in only 30 min. After chemical reduction, the obtained ∼25 kDa proteolytic fragments were analyzed by reversed phase liquid chromatography (LC) coupled online with an electron transfer dissociation (ETD)-enabled hybrid Orbitrap Fourier transform mass spectrometer (Orbitrap Elite FTMS). Upon optimization of ETD and product ion transfer parameters, results show that up to ∼50% sequence coverage for selected IgG fragments is reached in a single LC run and up to ∼70% when data obtained by distinct LC-MS runs are averaged. Importantly, we demonstrate the potential of this middle-down approach in the identification of oxidized methionine residues. The described approach shows a particular potential for the analysis of IgG mixtures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.