Abstract

Cerebral vasoreactivity can be studied with transcranial Doppler (TCD) by monitoring CO2-induced middle cerebral artery (MCA) velocity changes. Expected MCA mean velocity (Vm) changes due to changes in end-expiratory CO2 (EE-CO2) are established, but reactivity of common carotid artery (CCA) volume flow rate (VFR) has not been extensively reported. The authors assess the relationship between MCA Vm, CCA VFR, and EE-CO2. Ten normal individuals without cerebrovascular disease and with CCA diameters of more than 3.0 mm were studied. CCA VFR was obtained by Color Velocity Imaging Quantification and Ipsilateral MCA Vm by standard TCD methods. Each side was studied before, during, and after inhalation of 5% CO2. EE-CO2, blood pressure, and pulse rate were monitored. Four women and 6 men with mean age of 36 years were included. Significant correlations between MCA Vm and EE-CO2, CCA VFR and EE-CO2, and MCA Vm and CCA VFR were found. MCA Vm and CCA VFR increased 5.2% and 4.3% per mm Hg increase in EE-CO2, respectively. MCA Vm increased 0.3 cm/s for each ml/min increase in CCA VFR. In normal individuals, there is a direct correlation between MCA Vm, CCA VFR, and EE-CO2. Measurement of CCA VFR changes during CO2 inhalation may be an alternative method to estimate cerebral vasoreactivity when the MCA velocity cannot be obtained because of inadequate acoustic temporal windows.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call