Abstract

At late mitosis, the mother cell divides by the formation of a cleavage furrow, leaving two daughter cells connected by a thin intercellular bridge. During ingression of the cleavage furrow, the central spindle microtubules are compacted to form the structure known as the midbody (MB). The MB is situated within the intercellular bridge, with the abscission site sometimes occurring on one side of the MB. As a result of this one-sided (asymmetric) abscission, only one daughter cell can inherit the post-mitotic MB. Interestingly, recent studies have identified post-mitotic MBs as novel signaling platforms regulating stem cell fate and proliferation. Additionally, MBs were proposed to serve a role of polarity cues during the neurite outgrowth and apical lumen formation. Thus, abscission and MB inheritance is clearly a highly regulated cellular event that can affect development and various other cellular functions. In this review we discuss the latest findings regarding post-mitotic MB functions, as well as the machinery regulating MB inheritance and accumulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.