Abstract

Excitotoxicity is one of the main mechanisms related to hypoxia/reoxygenation (H/R) injury. Excitatory amino acid transporter (EAAT)2 mainly distributes on astrocytes and plays an important role on glutamate reuptake and glutamate homeostasis. Midazolam has a neuroprotective effect in some neuropathological conditions. The present study aimed to detect the role of EAAT2 in the neuroprotective effect of midazolam in neonatal rat brain subjected to H/R. Pretreatment with midazolam reversed H/R-induced apoptosis and downregulation of EAAT2 mRNA and protein expression in the hippocampus. Pretreatment with dihydrokainic acid (a selective inhibitor of EAAT2) exacerbated apoptosis, and thus inhibited the neuroprotective effect of midazolam against H/R injury. We demonstrated for the first time that dysregulation of EAAT2 expression may be related to the neural injury induced by H/R in rat pups, and pretreatment with midazolam attenuated apoptosis and improved learning and memory partly due to regulating EAAT2 expression.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call