Abstract
We developed an efficient and sensitive probe for drug-drug interactions mediated by human CYP3A4 by using midazolam (MDZ) as a probe substrate. Using global analysis of four parameters over several experimental data sets, we demonstrate that the first MDZ molecule (MDZ1) binds with high affinity at the productive site near the heme iron and gives only hydroxylation at the 1 position (1OH). The second midazolam molecule (MDZ2) binds at an allosteric site at the membrane surface and perturbs the position and mobility of MDZ1 such that the minor hydroxylation product at the 4 position (4OH) is formed in a 1:2 ratio (35%). No increase in catalytic rate is observed after the second MDZ binding. Hence, the site of the 1OH:4OH metabolism ratio is a sensitive probe for drugs, such as progesterone, that bind with high affinity to the allosteric site and serve as effectors. We observe similar changes in the MDZ 1OH:4OH ratio in the presence of progesterone (PGS), suggesting a direct communication between the active and allosteric sites. Mutations introduced into the F-F' loop indicate that residues F213 and D214 are directly involved in allosteric interactions leading to MDZ homotropic cooperativity, and these same residues, together with L211, are involved in heterotropic allosteric interactions in which PGS is the effector and MDZ the substrate. Molecular dynamics simulations provide a mechanistic picture of the origin of this cooperativity. These results show that the midazolam can be used as a sensitive probe for drug-drug interactions in human P450 CYP3A4.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.