Abstract

Survey-class autonomous underwater vehicles (AUVs) typically rely on Doppler Velocity Logs (DVL) for precision localization near the seafloor. In cases where the seafloor depth is greater than the DVL bottom-lock range, localizing between the surface and the seafloor presents a localization problem since both GPS and DVL observations are unavailable in the mid-water column. This work proposes a solution to this problem that exploits the fact that current profile layers of the water column are near constant over short time scales (in the scale of minutes). Using observations of these currents obtained with the Acoustic Doppler Current Profiler mode of the DVL during descent, along with data from other sensors, the method discussed herein constrains position error. The method is validated using field data from the Sirius AUV coupled with view-based Simultaneous Localization and Mapping (SLAM) and on descents up to 3km deep with the Sentry AUV.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call