Abstract

ABSTRACTThe Mid‐Palaeocene palaeogeography of Denmark and the surrounding areas have been reconstructed on the basis of published geological data integrated with 3D geodynamic modelling. The use of numerical modelling enables quantitative testing of scenarios based on geological input alone and thus helps constrain likely palaeo‐water depths in areas where the geological data are inconclusive or incomplete.The interpretation of large‐scale erosional valleys and small‐scale circular depressions at the Mid‐Palaeocene Top Chalk surface in the Norwegian–Danish basin as either submarine or subaerial features is enigmatic and has strong implications for palaeogeographical reconstructions of the eastern North Sea basin.A 3D thermo‐mechanical model is employed in order to constrain the likely palaeo‐water depths of the eastern North Sea basin during the Palaeocene. The model treats the lithosphere as an elasto‐visco‐plastic continuum and models the lithospheric response to the regional stress field and thermal structure. The model includes the effects of sea‐level change, sedimentation and erosion, from the Mid Cretaceous to the present. Modelling results reproduce to first order geological data such as present sediment isopachs and palaeo‐water depths.It is concluded that the Mid Palaeocene water depths in the Norwegian–Danish basin were about 250 m. The erosional valleys and circular depressions at the top of the Upper Cretaceous‐Danian Chalk Group are thus interpreted to have formed in relatively deep water rather than due to subaerial exposure. Likely interpretations of the structures are therefore submarine valleys and pockmarks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call