Abstract
The Kuqa fold-and-thrust belt developed in response to Cenozoic southward shortening between the Chinese Tian Shan and the Tarim Basin. This study aims to constrain the timing of the Late Cenozoic deformation by determining the onset time of enhanced rock cooling using apatite (U-Th-Sm)/He thermochronometry. Eight sedimentary samples were collected from Triassic to Cretaceous strata exposed along a 17km N-S transect, cross-cutting the northern Kuqa fold-and-thrust belt. Single-grain AHe ages from these samples mostly cluster around 8–16Ma and are younger than their depositional ages. Older AHe ages show a positive relationship with [eU], a proxy for radiation damage. Modelling of the observed age-eU relationships suggest a phase of enhanced cooling and erosion initiated at Mid-Late Miocene time (10–20Ma) in the northern Kuqa fold-and-thrust belt. This result is consistent with a coeval abrupt increase of sedimentation rate in the foreland Kuqa depression, south of the study area, indicating a Mid-Late Miocene phase of shortening in the northern Kuqa fold-and-thrust belt.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.