Abstract
We investigate the use of MIR PAH bands, continuum and emission lines as probes of star-formation and AGN activity in a sample of 100 'normal' and local (z~0.1) emission-line galaxies. The MIR spectra were obtained with the Spitzer Space Telescope Infrared Spectrograph (IRS) as part of the Spitzer-SDSS-GALEX Spectroscopic Survey (SSGSS) which includes multi-wavelength photometry from the UV to the FIR and optical spectroscopy. The continuum and features were extracted using PAHFIT (Smith et al. 2007), a decomposition code which we find to yield PAH equivalent widths up to ~30 times larger than the commonly used spline methods. Despite the lack of extreme objects in our sample (such as strong AGNs, low metallicity galaxies or ULIRGs), we find significant variations in PAH, continuum and emission line properties and systematic trends between these MIR properties and optically derived physical properties such as age, metallicity and radiation field hardness. We revisit the diagnostic diagram relating PAH equivalent widths and [Ne II]12.8micrometers/[O IV]25.9micrometers line ratios and find it to be in much better agreement with the standard optical star-formation/AGN classification than when spline decompositions are used, while also potentially revealing obscured AGNs. The luminosity of individual PAH components, of the continuum, and with poorer statistics, of the neon emission lines and molecular hydrogen lines, are found to be tightly correlated to the total IR luminosity, making individual MIR components good gauges of the total dust emission in SF galaxies. Like the total IR luminosity, these individual components can be used to estimate dust attenuation in the UV and in Halpha lines based on energy balance arguments. We also propose average scaling relations between these components and dust corrected, Halpha derived star-formation rates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.