Abstract
The present work is aimed at studying how spatially periodic modulations of the refractive index of the medium, i.e., laser-induced gratings (LIGs), generated in a gas mixture containing methane (CH4) by nanosecond pulses of resonant mid-infrared laser radiation, can be used to measure various gas parameters. It is investigated to what extent the temporal profiles of the LIG signals, recorded as the power of the diffracted by LIGs continuous wave probe radiation, are specific to the composition, pressure, and temperature of a selected buffer gas. This specificity is illustrated by the LIG signal profiles recorded in the experiments in different gas mixtures under various conditions. Experimental data show that large LIG signals can be obtained even in mixtures with CH4 concentrations as low as ∼100 parts per million due to the strong absorption of the excitation light and subsequent rapid, highly exothermic, and partner-dependent collisional energy exchange of the laser-excited molecules with the environment. These two factors ensure high LIG generation efficiency by a small number of CH4 molecules and high sensitivity of signal strength and profile to variations of gas parameters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.