Abstract

The problem of a traditional waveguide plasmonic resonator sensor is that part of the near-field intensity enhanced area is confined in the waveguide dielectric layer, which decreases the interaction effect between light and analyte. In order to solve this problem, a novel mid-infrared (MIR) chalcogenide (ChG) slot waveguide plasmonic resonator (SWGPR) sensor embedded with Au nanorods was proposed, where Au nanorods were used as antenna for enhancing mode coupling with the waveguide through resonance at the absorption wavelength of the analyte. The antenna parameters were optimized to make the resonance wavelength align with the absorption wavelength of the analyte. The proposed waveguide structure provides a sufficient sensing area and increases the electric field enhancement factor to > 6400. Polymethyl methacrylate (PMMA) and styrene were adopted as the analyte for sensing performance evaluation. The normalized absorption reaches 23.31 when the maximum extinction coefficient of PMMA is 0.08, which is at least 7 times higher than other silicon-on-insulator (SOI) waveguide plasmonic resonator sensors. The proposed waveguide structure provides a new idea for the design of other waveguide plasmonic resonator sensors with high sensing performance and has the potential for biochemical sensing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.