Abstract

As a key component of meridional overturning circulation, mid-deep circulation plays a crucial role in the vertical and meridional distribution of heat. However, due to a lack of observation data, current knowledge of the dynamics of mid-deep circulation currents moving through basin boundaries and complicated seabed topographies is severely limited. In this study, we combined oceanic observation data, bathymetric data, and numerical modeling of the northwest continental margin of the South China Sea to investigate (i) the main features of mid-deep circulation currents traveling through the central depression belt and (ii) how atmospheric-forcing (winds) mesoscale oceanic processes such as eddies and current–topography interactions modulate the mid-deep circulation patterns. Comprehensive results suggest that the convergence of different water masses and current–topography interactions take primary responsibility for the generation of instability and enhanced mixing within the central depression belt. By contrast, winds and mesoscale eddies have limited influence on the development of local circulation patterns at mid-deep depths (>400 m). This study emphasizes that the intensification and bifurcation of mid-deep circulation; specifically, those induced by a large depression belt morphology determine the local material cycle (temperature, salinity, etc.) and energy distribution. These findings provide insights for a better understanding of mid-deep circulation structures on the western boundary of ocean basins such as the South China Sea.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call