Abstract

A higher solar-to-electricity conversion efficiency was one of the major advantages of the solar-fossil hybrid systems, compared to the solar-only power plants. In this paper, a new mechanism to reveal the reasons for the improved solar-to-electricity efficiency in a solar-hybrid power plant was given. A correlation was built to describe the main influencing factors of its thermodynamic performances, including higher collector efficiency, higher turbine internal efficiency and upgraded energy level of the mid and low-temperature solar heat. This proposed mechanism can be used to integrate solar–coal hybridization system effectively. A case study was taken as the typical 200 MW coal-fired power plant hybridized with solar heat at approximately 300 °C, where the solar heat was used to preheat the feed water before entering the boiler. Furthermore, simulation results of this mid and low-temperature solar-hybridization system was conducted to prove the proposed mechanism. It is expected that the theoretical values have a good agreement with the simulation ones. The results obtained indicate that why development of mid and low-temperature solar–coal hybridization technology may provide a promising direction to efficient utilization of low-grade solar thermal energy, and provide the direction to enhance system performances of this kind of solar–coal hybrid power plants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call