Abstract

The proliferation of ski run construction is a worldwide trend. The machine-grading of slopes involved during ski run construction changes the physical, chemical and biological properties of the soil, having significant long-term ecological impact on the environment. Establishing and developing plant communities in these affected areas is crucial in rehabilitating the biotic and abiotic soil environment, while also improving slope stability and reducing the risk of natural hazards. This study evaluates changes in plant-soil properties and the long-term effects of machine-grading and subsequent restoration of ski runs so as to contribute to formulating the best practices in future ski run constructions. Study plots were established in 2000 and re-surveyed in 2017 on ski runs, which had been machine-graded and hydroseeded in the 1990s. Vegetation, root trait and soil surveys were carried out on ski run plots and compared to paired, undisturbed control sites off the ski runs. Plant cover remained unchanged on the ski-runs over time but plant richness and diversity considerably increased, reaching similar levels to undisturbed vegetation. Plant composition moved towards more semi-natural stages, showing a reduction in seeded plants with a comparable increase in the cover of colonizing native species. Root trait results were site-specific showing great variations between the mid and long-term after-effects of machine-grading and revegetation when compared to undisturbed sites. Under long-term management, the soil pH was still higher and the organic C content still lower in the ski runs than in the undisturbed sites, as the aggregate stability. The standard actions applied (machine-grading, storage and re-use of topsoil, hydroseeding of commercial seed mixtures, application of manure soon after seeding and low-intensity grazing) allowed the ecosystem to partially recover in three decades, and even if the soil has still a lower chemical and physical fertility than the undisturbed sites, the plant species composition reveals a satisfactory degree of renaturalization.

Highlights

  • IntroductionThe machine-grading of slopes involved during ski run construction changes the physical, chemical and biological properties of the soil, having significant long-term ecological impact on the environment

  • The proliferation of ski run construction is a worldwide trend

  • The ski industry provides an important source of income to mountain communities, attracting millions of visitors each ­year[1] in a growing trend of ski run construction around the ­world[2]

Read more

Summary

Introduction

The machine-grading of slopes involved during ski run construction changes the physical, chemical and biological properties of the soil, having significant long-term ecological impact on the environment. Barni et al.[9] recorded decreased levels of total nitrogen, organic carbon and cation exchange capacity as well as a severe breakdown of soil aggregate stability on graded ski runs compared to undisturbed sites. These altered soil properties trigger erosion and affect the natural recolonization and development of plant communities, on slopes above the timberline. The selection of the appropriate combination of plants can speed up ecological restoration and prolong the process of stabilizing and recovering s­ lopes[18]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.