Abstract

AbstractVibrational spectroscopy gives important information on the properties of ligand and metal–ligand bonds in metalloenzymes. Infrared spectroscopy is appealing for the study of metal active sites that are not amenable to Raman spectroscopy. We present a combined experimental and theoretical approach to analyze the mid‐ and far‐IR spectra of Cu,Zn‐superoxide dismutase (Cu,Zn‐SOD) as a probe of the histidine ligands. This metalloenzyme provides a unique model to identify specific IR signatures of metal–histidine coordination and to study their alterations as a function of the metal (copper/zinc), the copper valence state (+I/+II), the histidine coordination mode (Nτ and Nπ) and the histidine protonation state. DFT calculations combined with normal mode descriptions from potential energy distribution calculations were performed on two slightly different cluster models. Differences in the constraints at the side chain of one histidine Cu ligand sensibly modify the geometric parameters and vibrational properties. Electrochemically induced FTIR difference spectroscopy provided mid‐ and far‐IR fingerprint spectra of the Cu protein in aqueous media that are sensitive to the redox state of the Cu centre at the active site. Comparisons of the DFT predictions with the experimental IR modes of the histidine ligands at the Cu,Zn‐SOD active site showed that useful mid‐IR markers of histidine Nτ and Nπ coordination were predicted with good accuracy. The DFT analysis further demonstrated a link between the ν(C4–C5) mode frequency of His46 and the specific properties of the His46–Cu bond in Cu,Zn‐SOD. A combined theoretical and experimental approach on samples in H2O and 2H2O or 15N‐labelled samples identified the contributions from the histidine side chain modes in the 669–629 cm–1 region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.