Abstract

A novel concept learning algorithm named, MICSL: Multiple Iterative Constraint Satisfaction based Learning, is presented. The algorithm utilizes mathematical programming and constraint satisfaction techniques towards uniform representation and management of both data and background knowledge. It offers a flexible enough learning framework and respective services. The representation flexibility of MICSL rests on a method that transforms propositional cases, represented as propositional clauses, into constraint equivalents. The theoretical background as well as the validity of the transformation process are analyzed and studied. Following a ‘general-to-specific’ generalization strategy the algorithm iterates on multiple calls of a constraint satisfaction process. The outcome is a consistent set of rules. Each rule composes a minimal model of the given set of cases. Theoretical results relating the solutions of a constraint satisfaction process and the minimal models of a set of cases are stated and proved. The performance of the algorithm on some real-world benchmark domains is assessed and compared with widely used machine learning systems, such as C4.5 and CN2. Issues related to the algorithm’s complexity are also raised and discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.