Abstract

In the framework of the model intercomparison study—Asia Phase II (MICS2), where eight models are compared over East Asia, this paper studies the influence of different parameterizations used in the aerosol module on the aerosol concentrations of sulfate and nitrate in PM 10 . An intracomparison of aerosol concentrations is done for March 2001 using different configurations of the aerosol module of one of the model used for the intercomparison. Single modifications of a reference setup for model configurations are performed and compared to a reference case. These modifications concern the size distribution, i.e. the number of sections, and physical processes, i.e. coagulation, condensation/evaporation, cloud chemistry, heterogeneous reactions and sea-salt emissions. Comparing monthly averaged concentrations at different stations, the importance of each parameterization is first assessed. It is found that sulfate concentrations are little sensitive to sea-salt emissions and to whether condensation is computed dynamically or by assuming thermodynamic equilibrium. Nitrate concentrations are little sensitive to cloud chemistry. However, a very high sensitivity to heterogeneous reactions is observed. Thereafter, the variability of the aerosol concentrations to the use of different chemistry transport models (CTMs) and the variability to the use of different parameterizations in the aerosol module are compared. For sulfate, the variability to the use of different parameterizations in the aerosol module is lower than the variability to the use of different CTMs. However, for nitrate, for monthly averaged concentrations averaged over four stations, these two variabilities have the same order of magnitude.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.