Abstract

As potent antioxidants, anthocyanins can protect the body from free radicals. However, the traditional solvent extraction method has the disadvantages of requiring a high extraction temperature and long extraction time, so it is necessary to develop an efficient extraction method for anthocyanins. In this study, the technique of natural deep eutectic solvents (DESs) was applied to extract anthocyanins from purple perilla leaves with the aid of microwave-ultrasonic assisted extraction (MUAE). The response surface methodology (RSM), based on the Box-Behnken design (BBD), predicted the maximum extraction yield of anthocyanins to be 619.62 mg (100 g)-1 under the following conditions: x1 (ultrasonic extraction power)=357.25 W, x2 (time)=25.62 min, and x3 (temperature)=57.80 °C. The biological activity of the extract obtained was evaluated by examining its radical-scavenging effect on 1,1-diphenyl-2-picrylhydrazyl, hydroxyl radical, and superoxide anion radicals. Its bacteriostatic impact was investigated on four typical bacteria: Shewanella putrefaciens (S. putrefaciens), Pseudomonas fluorescens (P. fluorescens), Escherichia coli (E. coli), and Staphylococcus aureus (S. aureus). The integrated extraction method of DESs with MUAE was efficient, energy-saving, green, and sustainable. © 2022 Society of Chemical Industry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.