Abstract

This paper presents a highly sensitive sensor for crack detection in metallic surfaces. The sensor is inspired by complementary split-ring resonators which have dimensions much smaller than the excitation’s wavelength. The entire sensor is etched in the ground plane of a microstrip line and fabricated using printed circuit board technology. Compared to available microwave techniques, the sensor introduced here has key advantages including high sensitivity, increased dynamic range, spatial resolution, design simplicity, selectivity, and scalability. Experimental measurements showed that a surface crack having 200- $\mu \text{m}$ width and 2-mm depth gives a shift in the resonance frequency of 1.5 GHz. This resonance frequency shift exceeds what can be achieved using other sensors operating in the low GHz frequency regime by a significant margin. In addition, using numerical simulation, we showed that the new sensor is able to resolve a 10- $\mu \text{m}$ -wide crack (equivalent to $\lambda $ /4000) with 180-MHz shift in the resonance frequency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.