Abstract

Herein, we explore the biological properties of curcumin, quercetin, and rutin by loading them onto porous CuO nanorods (NRs). The CuO NRs were synthesized using the microwave irradiation method through a chemical reaction between CuSO4·5H2O and NaOH in the presence of the anionic stabilizer sodium dodecyl sulfate. The shape and surface morphology of CuO NRs were examined with two microscopic techniques: high-resolution transmission electron microscopy (HR-TEM) and field emission scanning electron microscopy (FESEM). Their average diameter was measured by TEM to be 15 ± 2 nm. The porosity and interfacial area of the fabricated material were determined by Brunauer-Emmett-Teller analysis. After successful synthesis, CuO NRs were loaded with polyphenolic curcumin, quercetin, and rutin, with the loading efficiency of 57.8, 62.2, and 81.2%, respectively, which was confirmed by UV-visible and infra-red spectroscopy and finally with a thermal gravimetric technique. Their radical scavenging activity was measured with the 2,2-diphenyl-1-picrylhydrazyl radical and compared with the control (ascorbic acid). Further, good bactericidal effects were observed against both Gram-positive bacterial strains, including Staphylococcus aureus and Bacillus subtilis, and Gram-negative bacterial strains, including Salmonella typhi, Pseudomonas aeruginosa, Escherichia coli, and Klebsiella pneumoniae. Excellent anticancer activity was observed against normal skin cells and breast cancer cells T-47D and MCF-7.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call