Abstract

Steam methane reforming (SMR) generates about 95% of hydrogen (H2) in the U.S. using natural gas as a main feedstock. However, this technology also generates a large amount of carbon dioxide (CO2), a major greenhouse gas causing global warming. Carbon capture and storage (CCS) technique is required, but the cost and safety of storing CO2 underground are a concern. Here we propose a new approach using microwave/electromagnetic irradiation to produce clean hydrogen from unrecovered hydrocarbons within petroleum reservoirs. Solid carbon or CO2 produced during this process will be simultaneously sequestrated underground without involving CCS. In this paper, we perform a series of experiments to investigate the in-situ hydrogen production from shale gas (methane) conversion by passing a methane stream through a packed shale rock sample heated by microwave. We found that methane conversion was significantly enhanced in the presence of Fe and Fe3O4 particles as catalysts, with a conversion of 40.5% and 100% at reaction temperature of 500 °C and 600 °C, respectively. Methane conversion is promoted at a lower reaction temperature by the catalytic effect of minerals in shale. Additionally, the influences of catalysts, shale rock, and methane flow rate are characterized.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call