Abstract
The temporal and spatial dynamics of one weak probe laser pulse, propagating through a A-type atomic medium with two-folded levels under the resonant excitation of one microwave driving field and one strong control field, is investigated in this paper. By numerically solving coupled Bloch-Maxwell equations, it is found that, in the absence of the microwave driving field, the atomic medium is transparent to the probe pulse at line center, which propagates over sufficiently long distances. By contrast, when the microwave driving field is applied, the probe pulse at line center can be rapidly absorbed on propagation. This substantial reduction of probe transmittance caused by the microwave driving field may lead to potential applications in designing a new kind of optical switching.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.