Abstract

This study reassesses an overview of the potential of the radio frequency (RF)-based state diagnostics of three-way catalysts (TWC) based on a previous study with an emphasis on the defect chemistry of the catalyst material during reoxidation and reduction. Some data are based on the previous works but are newly processed, and the signal parameters resonant frequency and inverse quality factor are evaluated with respect to applicability. The RF-based method uses electromagnetic resonances in a cavity resonator to provide information on the storage level of the oxygen storage component. The analysis focuses on a holistic investigation and evaluation of the major effects influencing the RF signal during operation. On the one hand, the response to the oxygen storage behavior and the resolution of the measurement method are considered. Therefore, this study merges original data from multiple former publications to provide a comprehensive insight into important measurement effects and their defect chemistry background. On the other hand, the most important cross-sensitivities are discussed and their impact during operation is evaluated. Additionally, the effect of catalyst aging is analyzed. The effects are presented separately for the two resonant parameters: resonant frequency and (unloaded) quality factor. Overall, the data suggest that the quality factor has a way higher signal quality at low temperatures (<400 °C) and the resonant frequency is primarily suitable for high operating temperatures. At most operating points, the quality factor is even more robust against interferences such as exhaust gas stoichiometry and water content. Correctly estimating the catalyst temperature is the most important factor for reliable results, which can be achieved by combining the information of both resonant signals. In the end, the data indicate that microwave-based state diagnosis is a powerful system for evaluating the oxygen storage level over the entire operating range of a TWC. As a research tool and in its application, the system can therefore contribute to the improvement of the emission control of future gasoline vehicles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.