Abstract

AbstractMicrowave irradiation was postulated to reduce time and energy for deep eutectic solvent (DES) production which is in line with the principle of green chemistry. In this study, the choline chloride (ChCl)‐malic acid (MA) DES was prepared using microwave‐assisted (DES‐Mic) and conventional (DES‐Con) approaches. Microwave was a relatively greener approach as it was rapid (5 min) and consumed 92.8 % energy less than DES‐Con. Moreover, DES‐Mic and DES‐Con exhibited similar physicochemical profiles (pH, solubility, density) and rheological properties. Structural profiling through FTIR analysis suggested hydrogen bond formation between the functional groups of ChCl and MA. The FTIR spectra also did not show structural differences in the DES synthesized using different methods. DES‐Mic and DES‐Con exhibited superior 2,2‐diphenyl‐1‐picrylhydrazyl (DPPH) (80.8±0.1 and 83.2±0.3 %, respectively) free radical scavenging activities than ChCl (15.6±0.8 %), MA (20.0±1.4 %) and ChCl:MA aqueous mixture without subjected to DES synthesis conditions (ChCl:MAaq; 23.3±0.8 %). Both DES were also proven as more efficient solvents for the extraction of polysaccharides from ramie leaf, as they recorded higher yields (21.4±1.9 and 22.2±1.0 %, respectively) than equimolar of MA (17.7±2.6 %) and ChCl (6.4±0.2 %). Overall, microwave was proven as a more sustainable approach for DES preparation compared to conventional method, which could be further improvised for industrial applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.