Abstract

Slurry and cavitation erosion often limits the durability of many fluid machines such as hydroturbines, pumps, and propellers. Despite good resistance against slurry erosion, thermal spray coatings generally exhibit poor resistance against cavitation erosion. The performance of thermal spray coatings under cavitation erosion is limited by the presence of defects such as pores, splat boundaries, and limited adhesion with the substrate. In the present work, we performed post-processing of the WC-10Co-4Cr and Ni coatings deposited using the detonation gun process. For post-processing, microwave technique was used owing to its capability for atomic-level heating. The microstructural characterization of the as-sprayed and post-processed coatings showed significant homogenization for the latter. Compared to the typical lamellar structure of as-sprayed, the processed samples exhibited a columnar structure with metallurgical bonding with the substrate. The mechanical properties of the coatings were significantly improved after post-processing owing to the elimination of splat boundaries and pores which significantly enhanced the cavitation and slurry erosion resistance. Post-processed coatings showed at least ten times higher resistance to cavitation erosion. The slurry erosion resistance of the coatings also improved up to three times depending upon the impingement angle. A significant difference in the erosion mechanism was also observed after post-processing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call