Abstract
The fluorescent nitrogen-doped carbon dots (N-CDs) were synthesized via a facile one-pot solvothermal process using coal (Jin 15 Anthracite and Shaerhu lignite) as raw materials and dimethyl formamide (DMF) as the solvent, employing a microwave pyrolysis method. This approach demonstrates remarkable efficacy in the development of nitrogen-doped carbon dots (N-CDs) with a high quantum yield (QY). The N-CDs prepared have strong photoluminescence properties. Moreover, the obtained N-CDs emit blue PL and are easily dispersed in polymethyl methacrylate (PMMA), preserving the inherent advantages of N-CDs and the PMMA matrix. The JN-CDs exhibit a high quantum yield (QY) of 49.5% and a production yield of 25.7%, respectively. In contrast, the SN-CDs demonstrate a quantum yield of 40% and a production yield of 35.1%. It is worth noting that the production yield and quantum yield of coal-based carbon dots are inversely related indices. The lower metamorphic degree of subbituminous coal favors an enhanced product yield, while the higher metamorphic degree of anthracite promotes an improved quantum yield in the product, which may be attributed to the presence of amorphous carbon within it. Consequently, we propose and discuss potential mechanisms underlying N-CD formation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.