Abstract

The wax present in petroleum sludge, generated by refineries and at crude production sites, consists of paraffin hydrocarbons (C18–C36) known as paraffin wax and naphthenic hydrocarbons (C30–C60). The present study is aimed at the recovery of wax from petroleum oily sludge by microwave-assisted solvent extraction using a Toluene/MEK mixture and subsequently de-crystallizing the wax. The process variables affecting the microwave-assisted solvent extraction are optimized for recovery of wax. The simultaneous effects of process variables such as irradiation time (2–10 minutes), solvent to sludge ratio (40–80 wt%), reactant volume (100–300 ml), and microwave power (80–400 W) on the recovery of wax were evaluated. A central composite design and response surface methodology were used for the optimization of the extraction process. Based on the central composite design, quadratic models were developed to correlate the extraction process variables with the responses and the models were analyzed using appropriate statistical methods for analysis of variance. Optimization of process variables shows the maximum recovery of wax was about 79.57% at 300 ml of reactant volume with microwave power output of 400 W at 7.6 minutes of retention time with 56.56% of Toluene/MEK to sludge ratio.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call