Abstract
A portable microwave system to detect traumatic brain injuries is described. The wideband system utilizes a unidirectional antenna, microwave transceiver, and processing and image reconstruction algorithms. The utilized antenna is designed to have a compact three-dimensional (3-D) structure using a slotted dipole element and a folded parasitic structure. It attains directional radiation patterns with an average 9-dB front-to-back ratio and 102.2% fractional bandwidth covering the band 1.1–3.4 <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$~$</tex> </formula> GHz, which is suitable for head imaging. To test the system, a realistic head phantom, which attains accurate internal and external anatomical structure and electrical properties, is fabricated by a 3-D printer using a detailed numerical model. Targets imitating the properties of bleeding are inserted at different positions in the fabricated head phantom to emulate brain injury scenarios. The integrated system is used in a virtual arrayed monostatic radar approach to detect the injuries. Using data sets recorded at 32 antenna positions around the head, a back projection algorithm is used to generate images of the scanned head. The achieved results demonstrate the feasibility of such a system as a portable module for brain injuries detection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Microwave Theory and Techniques
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.