Abstract
Chain-like zircona (ZrO2) nanofibers were prepared by microwave sintering without any surfactants or solid templates. Microwave sintering was conducted in a multimode microwave cavity with TE666 resonant mode at 2.45 GHz. Carbon particles were used to activate unique thermal processes when mixed with ZrO2 precursor. The sintering condition was at 1300°C for 10 min. Samples were characterized by XRD, SEM, TEM techniques. It was found that both monolithic and tetragonal ZrO2 co-existed in samples prepared fromthe mixture of ZrO2 precursors and carbon by either microwave or conventional sintering. Only m-ZrO2 exists in samples prepared by ZrO2 precursors without carbon. ZrO2 appeared as chain-like nanofibers, which might be attributed to a so-called carbon-induced self-assembly growth mechanism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.