Abstract

Nanostructured metal vanadates have recently harvested enormous consideration among the researchers due to their remarkable performances in catalysis, electronic devices, energy storage, and conversion. In the present work, we have formulated a facile and template-free method to synthesize β-Cu2V2O7 nanorods and analyzed their characteristics by using various spectroscopy techniques. Copper and vanadium are the earth abundant, relevantly economical, and possess several oxidation states, which can render a broad range of redox reactions favorable for the electrochemical performance. The catalytic efficiency of the synthesized nanomaterial was assessed by the photocatalytic degradation of methylene blue (MB) as a model cationic dye under the visible light irradiation. At the irradiation time of 60 min, the catalyst showed the degradation efficiency of 81.85%, kapp (min− 1) of 0.0193 min−1 with the first-order kinetic model reaction. The electrochemical measurements were performed using a three-electrode configuration in 1M NaOH solution. The measured specific capacitance of Cu2V2O7 modified electrode was 269 F/g at 1 A/g with good stability and retention capacity of 89% after 4000 cycles that paved the way to consider β-Cu2V2O7 as prospective material for energy-storage applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.