Abstract

Tin phosphate glasses in the SnO-P2O5 binary diagram have been prepared by using a domestic microwave-heating device. Microwaves provide an extremely facile and automatically temperature-controlled route to the synthesis of glasses due to the specific dielectric properties of each chemical composition. Typical melting time is no longer than 10 min, limiting the oxidation of Sn2+ and the melt can be quenched into glass. The glass transition temperature increases with the SnO content confirming the depolymerization of the vitreous network, as expected by the relative fraction of the different Q n structural units deduced from NMR experiments. Concerning the mechanical properties, the Vickers hardness and the fracture toughness decrease while the thermal expansion coefficient and the different elastic moduli remain constants. These results confirm that those characteristics are not very sensible to structural considerations. On the contrary, the chemical durability of Sn2P2O7, determined from the weight loss method, is 300 times higher than that of Sn(PO3)2. Furthermore, Sn2P2O7 is the only glass composition that exhibits a devitrification phenomenon leading to the low-temperature phase of the crystalline tin(II) pyrophosphate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.