Abstract

Isostructural MOF-74 (M=Ni, Mg) were successfully synthesized with both hydrothermal method (1 and 3) and microwave-assisted method (2 and 4). These MOF-74 samples were characterized with scanning electron microscopy for crystal structure, powder X-ray diffraction for phase structure, and nitrogen adsorption for pore textural properties. The experimental results showed that MOF-74 samples synthesized by the microwave-assisted method had a smaller particle size with relatively more uniform particle size distribution. The microwave effects also helped to produce a larger specific surface area and micropore volume, with a similar median pore diameter. Adsorption equilibrium and kinetics of various gases (CO2, CH4, N2, C2H4, C2H6, C3H6 and C3H8) on these MOF-74 samples were determined at 298K and gas pressures up to 1bar. Adsorption equilibrium selectivity (α), combined equilibrium and kinetic selectivity (β), and adsorbent selection parameter for pressure swing adsorption processes (S) were estimated. The relatively high values of adsorption selectivity indicates the potential to separate CO2/CH4, CO2/N2, C2H4/C2H6, C3H6/C3H8 and C3H6/C2H4 pairs in a vacuum swing adsorption process using the MOF-74 as adsorbent. The microwave-assisted method was found to improve MOF-74 with a larger adsorption capacity and somewhat higher selectivity for gas separation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call