Abstract
Vacuum windows are required in magnetically confined fusion experiments to provide possibilities to observe the plasma in a wide range of electromagnetic wavelengths. The window disk consists of a dielectric, e.g. Fused Silica (SiO2), Sapphire or Chemically Vapourised Diamond (CVD). As electromagnetic waves pass through the disk, a fraction of the beam power is dissipated resulting in a temperature increase of the disk. In Electron Cyclotron Waves (ECW) heated plasmas the dissipation in the window disk can be very high. The computation of dielectric losses for a collimated beam with known incidence angle, polarisation and loss tangent (measure for the intrinsic dielectric loss) is well established. However, the dielectric losses in diagnostic windows mostly result from microwave stray radiation, which results from a modest, but inevitable, fraction of non-absorbed ECW. This fraction diffuses in the vessel by many reflections into rays with random k-vector and with random polarisation. In this work the thermal load on the window disk by microwave stray radiation is assessed. The load by a collimated beam is studied as a function of incidence angle and polarisation allowing to average over a distribution of incident rays. An experiment was commissioned measuring the loss tangent of a number of commercially available SiO2 disks at low power in an open resonator, and subsequently measuring the dielectric heating of these disks at high power stray radiation using the facility ’MISTRAL’ at Wendelstein-7X. The experimental results are compared to modelling and it is demonstrated that, in the parameter range considered, single-pass fractional absorption may be applied while taking a safety margin that arises from the minima and maxima due to multiple reflections.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.