Abstract

AbstractThe utilization of microwave energy in polymer synthesis is a fast growing field of research leading to a more rapid and cleaner polymerization process. In order to synthesize novel optically active monomer 5‐(4‐methyl‐2‐phthalimidylpentanoylamino)isophthalic acid (6), the reaction of phthalic anhydride with l‐leucine was carried out in an acetic acid solution and 4‐methyl‐2‐phthalimidylpentanoic acid as an imide acid was obtained in good yield. Then, it was converted to 4‐methyl‐2‐phthalimidylpentanoyl chloride by treatment with thionyl chloride. This acid chloride was reacted with 5‐aminoisophthalic acid and the novel bulky aromatic amide‐imide chiral monomer 6 was obtained in high yield and was characterized with spectroscopy techniques as well as specific rotation and elemental analysis. Polycondensation of monomer 6 with different diisocyanates such as 4,4′‐methylenebis(phenyl isocyanate), toluene‐2,4‐diisocyanate, isophorone diisocyanate, and hexamethylene diisocyanate was performed by two different methods: microwave irradiation and classical heating polymerization techniques in the presence of various catalysts and without a catalyst. The microwave polymerization technique provides a new way for the production of polymers at high rates. The resulting novel optically active polyamides have inherent viscosities in the range of 0.25–0.63 dl/g. They show good thermal stability and are soluble in amide‐type solvents. The obtained polyamides were characterized by FT‐IR, 1H‐NMR spectroscopy, elemental analyses, specific rotation, and thermal analyses methods. Copyright © 2008 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.