Abstract

The microwave spectra of the two conformers each, of the 1H and 3H tautomers of 4-vinylimidazole, have been measured in the 48-72 GHz spectral region. The 4-vinylimidazole was generated in situ by the facile decarboxylation of urocanic acid at its vaporization temperature of 220 °C. The recognition of this reaction casts doubt on the reliability of a previous published spectroscopic study apparently mistakenly thought to be of uncontaminated vaporized urocanic acid, a natural product of great interest in skin cancer etiology. Quantum chemical theoretical predictions of the structures of each of ten possible conformers∕tautomers of urocanic acid and four of 4-vinylimidazole were performed at the ab initio MP2∕cc-pVTZ level, with vibrational predictions at the B3LYP∕cc-pVTZ and M062X∕cc-pVTZ levels. The predicted values of rotational constants for all the urocanic acid species were found to be quite inconsistent with those of the four observed spectra. For the 4-vinylimidazole isomers, the calculated relative energies suggested that all four species would have substantial equilibrium mole fractions at 220 °C. The isomers were identified by matching the observed and calculated rotational constants. The resulting assignment was found to be consistent with the predicted and observed (14)N nuclear quadrupole hyperfine multiplet patterns for a suitable rotational transition, and with the observed versus empirically calculated inertial defects. With one exception, the predicted structures were found to be planar. Resembling the case of 1-vinylimidazole, where one conformer is nonplanar, one isomer of 4-vinylimidazole was found to be quasiplanar. This seems to belong to a class of spontaneous symmetry-breaking observed in the molecular structure of some otherwise planar vinyl aromatic compounds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call